Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 227: 163-170, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325929

RESUMO

III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.

2.
Nat Nanotechnol ; 15(9): 750-754, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32661373

RESUMO

Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices1, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping2-5, host Mott insulating and superconducting states6 and act as unique Hubbard systems7-9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation10-14. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ-K interlayer excitons can be flipped with electric fields, while higher-energy K-K interlayer excitons undergo field-asymmetric hybridization with intralayer K-K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems16,17, exotic metasurfaces18, collective excitonic phases19 and quantum emitter arrays20,21 via domain-pattern engineering.

3.
Nat Nanotechnol ; 15(7): 592-597, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32451502

RESUMO

Van der Waals heterostructures form a unique class of layered artificial solids in which physical properties can be manipulated through controlled composition, order and relative rotation of adjacent atomic planes. Here we use atomic-resolution transmission electron microscopy to reveal the lattice reconstruction in twisted bilayers of the transition metal dichalcogenides, MoS2 and WS2. For twisted 3R bilayers, a tessellated pattern of mirror-reflected triangular 3R domains emerges, separated by a network of partial dislocations for twist angles θ < 2°. The electronic properties of these 3R domains, featuring layer-polarized conduction-band states caused by lack of both inversion and mirror symmetry, appear to be qualitatively different from those of 2H transition metal dichalcogenides. For twisted 2H bilayers, stable 2H domains dominate, with nuclei of a second metastable phase. This appears as a kagome-like pattern at θ ≈ 2°, transitioning at θ → 0 to a hexagonal array of screw dislocations separating large-area 2H domains. Tunnelling measurements show that such reconstruction creates strong piezoelectric textures, opening a new avenue for engineering of 2D material properties.

4.
Nat Mater ; 19(3): 299-304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32015532

RESUMO

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron-photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

5.
ACS Nano ; 14(1): 993-1002, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31815429

RESUMO

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at disk ultramicroelectrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride acting as a barrier between a graphite electrode and redox mediators in a liquid solution. This was achieved by the fabrication of disk ultramicroelectrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common outer-sphere redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They depart significantly from the Butler-Volmer kinetics and instead show behavior previously predicted by the Marcus-Hush theory of electron transfer. In addition, our system provides a noteworthy experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.

6.
ACS Nano ; 13(5): 5112-5123, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30946569

RESUMO

Two dimensional III-VI metal monochalcogenide materials, such as GaSe and InSe, are attracting considerable attention due to their promising electronic and optoelectronic properties. Here, an investigation of point and extended atomic defects formed in mono-, bi-, and few-layer GaSe and InSe crystals is presented. Using state-of-the-art scanning transmission electron microscopy, it is observed that these materials can form both metal and selenium vacancies under the action of the electron beam. Selenium vacancies are observed to be healable: recovering the perfect lattice structure in the presence of selenium or enabling incorporation of dopant atoms in the presence of impurities. Under prolonged imaging, multiple point defects are observed to coalesce to form extended defect structures, with GaSe generally developing trigonal defects and InSe primarily forming line defects. These insights into atomic behavior could be harnessed to synthesize and tune the properties of 2D post-transition-metal monochalcogenide materials for optoelectronic applications.

7.
ACS Nano ; 13(2): 2136-2142, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676744

RESUMO

Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both µARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.

8.
Sci Rep ; 7: 45998, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382955

RESUMO

The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and K' valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the constituent electron and hole. One might similarly assume that the ground states of charged excitons and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K') electron-electron scattering mixes bright and dark states of these complexes, and estimate the radiative lifetimes in the ground states of these "semi-dark" trions and biexcitons to be ~10 ps, and analyse how these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 monolayers.

9.
Nat Commun ; 8: 14410, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28194026

RESUMO

Weak interlayer interactions in van der Waals crystals facilitate their mechanical exfoliation to monolayer and few-layer two-dimensional materials, which often exhibit striking physical phenomena absent in their bulk form. Here we utilize mechanical exfoliation to produce a two-dimensional form of a mineral franckeite and show that the phase segregation of chemical species into discrete layers at the sub-nanometre scale facilitates franckeite's layered structure and basal cleavage down to a single unit cell thickness. This behaviour is likely to be common in a wider family of complex minerals and could be exploited for a single-step synthesis of van der Waals heterostructures, as an alternative to artificial stacking of individual two-dimensional crystals. We demonstrate p-type electrical conductivity and remarkable electrochemical properties of the exfoliated crystals, showing promise for a range of applications, and use the density functional theory calculations of franckeite's electronic band structure to rationalize the experimental results.


Assuntos
Antimônio/química , Ferro/química , Chumbo/química , Nanoestruturas/química , Sulfetos/química , Estanho/química , Cristalização , Condutividade Elétrica , Microscopia de Força Atômica , Microscopia Eletrônica , Nanoestruturas/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrometria por Raios X
10.
Nat Nanotechnol ; 12(3): 223-227, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27870843

RESUMO

A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

11.
Nanoscale ; 8(11): 5826-34, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26927684

RESUMO

Rhenium dichalcogenides, such as ReS2 and ReSe2, have attracted a lot of interests due to the weak interlayered coupling in these materials. Studies of rhenium based dichalcogenide alloys will help us understand the differences between binary rhenium dichalcogenides. They will also extend the applications of two-dimensional (2D) materials through alloying. In this work, we studied the optoelectronic properties of ReSSe with a S and Se ratio of 1 : 1. The band gap of the ReSSe alloy is investigated by optical absorption spectra as well as theoretical calculations. The alloy shows weak interlayered coupling, as evidenced by the Raman spectrum. A field-effect transistor based on ReSSe shows typical n-type behavior with a mobility of about 3 cm(2) V(-1) s(-1) and an on/off ratio of 10(5), together with the in-plane anisotropic conductivity. The device also shows good photoresponse properties, with a photoresponsivity of 8 A W(-1). The results demonstrated here will provide new avenues for the study of 2D materials with weak interlayer interactions and in-plane anisotropy.

12.
Phys Rev Lett ; 114(3): 037401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659021

RESUMO

Using polarization-resolved photoluminescence spectroscopy, we investigate the breaking of valley degeneracy by an out-of-plane magnetic field in back-gated monolayer MoSe2 devices. We observe a linear splitting of -0.22 meV/T between luminescence peak energies in σ+ and σ- emission for both neutral and charged excitons. The optical selection rules of monolayer MoSe2 couple the photon handedness to the exciton valley degree of freedom; so this splitting demonstrates valley degeneracy breaking. In addition, we find that the luminescence handedness can be controlled with a magnetic field to a degree that depends on the back-gate voltage. An applied magnetic field, therefore, provides effective strategies for control over the valley degree of freedom.

13.
J Chem Phys ; 140(10): 104306, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628168

RESUMO

Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap E(g) of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient ß governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find E(g) = 2.16 eV and an upper bound for ß of 0.21 Å(-1).

14.
ACS Nano ; 8(1): 752-60, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24364508

RESUMO

Optoelectronic devices based on layered materials such as graphene have resulted in significant interest due to their unique properties and potential technological applications. The electric and optoelectronic properties of nano GaTe flakes as layered materials are described in this article. The transistor fabricated from multilayer GaTe shows a p-type action with a hole mobility of about 0.2 cm(2) V(-1) s(-1). The gate transistor exhibits a high photoresponsivity of 10(4) A/W, which is greatly better than that of graphene, MoS2, and other layered compounds. Meanwhile, the response speed of 6 ms is also very fast. Both the high photoresponsivity and the fast response time described in the present study strongly suggest that multilayer GaTe is a promising candidate for future optoelectronic and photosensitive device applications.

15.
Nanoscale ; 4(24): 7720-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23135614

RESUMO

Molecule-sized fluorescent emitters are much sought-after to probe biomolecules in living cells. We demonstrate here by time-dependent density functional calculations that the experimentally achievable 1-2 nm sized silicon carbide nanocrystals can emit light in the near-infrared region after introducing appropriate color centers in them. These near-infrared luminescent silicon carbide nanocrystals may act as ideal fluorophores for in vivo bioimaging.


Assuntos
Biomarcadores/metabolismo , Compostos Inorgânicos de Carbono/química , Nanopartículas/química , Compostos de Silício/química , Humanos , Pontos Quânticos , Teoria Quântica , Espectroscopia de Luz Próxima ao Infravermelho
16.
ACS Nano ; 4(12): 7363-6, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21126086

RESUMO

Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.


Assuntos
Eletricidade , Nanotubos de Carbono/química , Rotação , Transdutores , Modelos Moleculares , Conformação Molecular
17.
J Phys Chem A ; 111(12): 2434-41, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17388288

RESUMO

The properties of an infinite carbon chain (polyyne), an allotropic form of elemental carbon, are of importance in materials science as well as astronomy. The Raman active longitudinal optical (LO) frequencies are calculated with first-principles methods for oligoynes and polyyne and compared with experiments. Since traditional force constant scaling schemes fail in this case, we introduced a linear/exponential scaling scheme based on the exponential behavior of the carbon-carbon bond stretching force constant couplings in quasi-one-dimensional conjugated chains. The LO Raman active frequency is predicted at 1870-1877 cm-1. Our results provides further evidence for the assignment of the characteristic Raman peaks near 1850 cm-1 of the recently discovered long linear carbon chains encapsulated inside multiwalled or double-walled carbon nanotubes.


Assuntos
Poli-Inos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...